metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Bis(azido- κN)[(6*R*,7*S*,8*S*,14*S*)-(–)-sparteine- $\kappa^2 N$,*N*']copper(II)

Yong-Kyu Kim,^a Bun-Joo Kim,^a Sung Kwon Kang,^b Sung-Nak Choi^a and Yong-Min Lee^a*

^aDepartment of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Pusan 609-735, South Korea, and ^bDepartment of Chemistry, Chungnam National University, Daejeon 305-764, South Korea Correspondence e-mail: yomlee@pusan.ac.kr

Received 5 December 2002 Accepted 3 January 2003 Online 25 January 2003

In the title compound, $[Cu(N_3)_2(C_{15}H_{26}N_2)]$, the chiral alkaloid (-)-*l*-sparteine (Sp) acts as a bidentate ligand, with two azide ligands occupying the remaining coordination sites, forming a distorted CuN₄ tetrahedron. The dihedral angle between the N_{Sp}-Cu-N_{Sp} and N_{azide}-Cu-N_{azide} planes is 55.3 (2)°. Principal dimensions include Cu-N_{Sp} = 2.011 (6) and 2.025 (5) Å, and Cu-N_{azide} = 1.939 (6) and 1.934 (7) Å. The mid-point of the N_{Sp}···N_{Sp} line does not lie exactly in the N_{azide}-Cu-N_{azide} plane, but is tilted towards one of the N_{Sp} atoms by 0.026 Å.

Comment

There exist three diastereomers of sparteine, namely (6R,7S,8S,14S)-(-)-sparteine, $(6R,7S,8S,14R)-(-)-\alpha$ -isosparteine and (6S,7S,8S,14S)-(-)- β -isosparteine. These sparteine ligands have attracted research attention and have been intensively utilized in medicinal chemistry (Cady et al., 1977) and the asymmetric synthesis of chiral compounds (Beak et al., 1996; Kretchmer, 1972; Mason & Peacock, 1973). Many crystal structures of copper(II) complexes with neutral alkaloid sparteine diastereomers have been reported (Childers et al., 1975; Choi et al., 1995; Kim et al., 2001, 2002; Lee et al., 1998, 2000; Lopez et al., 1998). The sparteine-copper(II) complexes that have been reported, with one exception (Lee et al., 1998), are four-coordinate and tetrahedrally distorted (Childers et al., 1975; Choi et al., 1995; Kim et al., 2001, 2002; Lee et al., 2000; Lopez et al., 1998) from the ligand-field favorable squareplanar geometry (Figgis, 1966). The pseudo-tetrahedral geometry around the Cu^{II} center of these complexes is due to the steric requirements imposed by the bulky sparteine ligand. However, the role of the anionic ligand, L, in these complexes, *i.e.* of the type $[CuL_2(C_{15}H_{26}N_2)]$, is also important in the ultimate molecular structure. We determined the crystal structure of the title compound, (I), in order to evaluate the

extent of the distortion imposed by the (-)-sparteine ligand compared with that imposed by (-)- α -isosparteine. Actually, the extent of the distortion towards a tetrahedron in (I) was higher than that in the (-)- α -isosparteine complex (Kim *et al.*, 2002).

In (I), (–)-sparteine acts as a bidentate ligand and two azide ligands occupy the remaining coordination sites, forming a distorted CuN₄ tetrahedron (Fig. 1). The (–)-sparteine ligand consists of one terminal ring folded down over the metal (*endo*) and another terminal ring folded back away from the metal (*exo*). This conformation is identical to that of the free ligand (Boschmann *et al.*, 1974; Wrobleski & Long, 1977). Two azide anions are bound terminally to the Cu^{II} center. The dihedral angle between the N1–Cu–N9 and N18–Cu–N21 planes in (I) is 55.3 (2)°, whereas that in [Cu(N₃)₂-(α -C₁₅H₂₆N₂)] is 50.2 (2)° (Kim *et al.*, 2002). This smaller dihedral angle can be visualized as a balance between the crystal field stabilization effect and the steric effect of (–)-sparteine.

One of the parameters associated with the distortion of the tetrahedron is the 'tilt' of the bidentate sparteine ligand with respect to the N18–Cu–N21 plane. In (I), the mid-point of the N1…N9 line does not lie exactly in the N18–Cu–N21 plane, but is tilted towards atom N1 by 0.026 Å (1.8% of half of the N1…N9 distance). Similarly, the mid-point of the

Figure 1

ORTEP-3 (Farrugia, 1997) diagram of (I) showing the atom-numbering scheme and 30% probability ellipsoids. H atoms have been omitted for clarity.

N18···N21 line is tilted towards atom N18 by 0.045 Å (3.0% of half of the N18···N21 distance). However, in $[Cu(N_3)_2(\alpha - C_{15}H_{26}N_2)]$, the mid-point of the N1···N9 line is tilted towards atom N1 by 0.103 Å (7.2% of half of the N1···N9 distance) and the mid-point of the N18···N21 line is greatly tilted towards atom N18 by 0.264 Å (17.7% of half of the N18···N21 distance). In (I), the N1-Cu-N18 and N9-Cu-N21 angles differ by 2.1° and, similarly, the N1-Cu-N21 and N9-Cu-N18 angles differ by only 2.2°. These results clearly indicate that the distortion towards a tetrahedron for (I) is quite symmetrically twisted.

The Cu^{II}-azide distances (Table 1) found in (I) agree with the Cu^{II}-N distances found in copper(II) complexes containing a terminally bound azide ligand (Goher *et al.*, 2001; Grove *et al.*, 2001; Kim *et al.*, 2002). The coordinating azide anions are nearly linear, but the (Cu-)N-N bonds are longer than the (Cu-N-)N-N bonds. This result suggests that the covalency in Cu^{II}-azide bonding is appreciable and that the main contribution to the ground-state geometry of the coordinated azide is provided by the two canonical structures $-N=N^+=N^- \leftrightarrow -N^--N^+=N$. This result is quite similar to that found in the [Cu(N₃)₂(α -C₁₅H₂₆N₂)] complex (Kim *et al.*, 2002).

Experimental

The precursor copper(II) complex $[Cu(NO_3)_2(C_{15}H_{26}N_2)]$ was prepared by mixing an ethanol-triethyl orthoformate (5:1 ν/ν) solution of copper(II) nitrate 2.5-hydrate with a stoichiometric amount of (–)-sparteine at room temperature for 2 h. The resulting blue precipitate was filtered off, washed with cold absolute ethanol and then dried in a vacuum. The title complex, (I), was prepared from the substitution reaction of $[Cu(NO_3)_2(C_{15}H_{26}N_2)]$ with a stoichiometric amount of NaN₃ in an ethanol-triethyl orthoformate (5:1 ν/ν) solution. The dark-brown precipitate was filtered off, washed with cold absolute ethanol and then dried in a vacuum. Single crystals were obtained by recrystallization at about 278 K from a dichloromethane-triethyl orthoformate (5:1 ν/ν) solution. Analysis calculated for C₁₅H₂₆CuN₈: C 47.17, H 6.86, N 29.34%; found: C 47.83, H 6.91, N 29.59%.

Crystal data

Data collection

Bruker P4 diffractometer $2\theta/\omega$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.882$, $T_{max} = 0.938$ 5383 measured reflections 4004 independent reflections 2061 reflections with $>2\sigma(I)$ Irregular, dark brown $0.44 \times 0.42 \times 0.32 \text{ mm}$ $R_{\text{int}} = 0.040$ $\theta_{\text{max}} = 27.5^{\circ}$ $h = -1 \rightarrow 10$ $k = -1 \rightarrow 18$

Mo $K\alpha$ radiation Cell parameters from 40 reflections

 $\theta = 5.0-12.6^{\circ}$ $\mu = 1.27 \text{ mm}^{-1}$

T = 296 (2) K

 $k = -1 \rightarrow 18$ $l = -19 \rightarrow 19$ 3 standard reflections every 97 reflections intensity decay: 1%

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} < 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.059$	$\Delta \rho_{\rm max} = 0.90 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.171$	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$
S = 1.06	Extinction correction: SHELXL97
4004 reflections	Extinction coefficient: 0.0055 (12)
218 parameters	Absolute structure: Flack (1983),
H-atom parameters constrained	1712 Friedel pairs
$w = 1/[\sigma^2(F_a^2) + (0.0588P)^2]$	Flack parameter = $-0.06(3)$
+ 0.8943P]	
where $P = (F_{2}^{2} + 2F_{2}^{2})/3$	

Table 1

Selected geometric parameters (Å, °).

Cu-N1	2.011 (6)	N18-N19	1.175 (8)
Cu-N9	2.025 (5)	N19-N20	1.134 (10)
Cu-N18	1.939 (6)	N21-N22	1.200 (8)
Cu-N21	1.934 (7)	N22-N23	1.140 (9)
N1-Cu-N9	90.2 (2)	N18-Cu-N21	101.1 (3)
N1-Cu-N18	96.8 (3)	Cu-N18-N19	118.7 (6)
N1-Cu-N21	140.6 (3)	N18-N19-N20	172.6 (9)
N9-Cu-N18	138.4 (3)	Cu-N21-N22	120.7 (5)
N9-Cu-N21	98.9 (2)	N21-N22-N23	174.4 (9)

The positional parameters of the H atoms of the sparteine ligand were calculated geometrically and constrained to ride on their attached atoms, with $U_{\rm iso}$ values fixed at 1.2 times the $U_{\rm eq}$ values of their parent atoms. The absolute configuration of (I) was known from the known configuration of the starting material and was confirmed by the value [-0.06 (3)] of the Flack (1983) parameter.

Data collection: *XSCANS* (Siemens, 1996); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This research was supported by grant No. R01-2001-000-00055-0 from the Korean Science and Engineering Foundation.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1677). Services for accessing these data are described at the back of the journal.

References

- Beak, P., Basu, A., Gallagher, D. J., Park, Y. S. & Thayumanavan, S. (1996). Acc. Chem. Res. 29, 552–560.
- Boschmann, E., Weinstock, L. M. & Carmack, M. (1974). Inorg. Chem. 13, 1297–1300.
- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cady, W. A., Boschmann, E., Choi, R. S., Heidelman, J. F. & Smith, S. L. (1977). Inorg. Chem. 16, 1958–1961.
- Childers, L. S., Folting, K., Merritt, L. L. Jr & Streib, W. E. (1975). *Acta Cryst.* B**31**, 924–925.
- Choi, S.-N., Kwon, M.-A., Kim, Y., Bereman, R. D., Singh, P., Knight, B. & Seff, K. (1995). J. Coord. Chem. 34, 241–252.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Figgis, B. N. (1966). *Introduction to Ligand Fields*. New York: John Wiley and Sons.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Goher, M. A. S., Escuer, A., Mautner, F. A. & Al-Salem, N. A. (2001). Polyhedron, 20, 2971–2977.
- Grove, H., Julve, M., Lloret, F., Kruger, P. E., Tornroos, K. W. & Sletten, J. (2001). Inorg. Chim. Acta, 325, 115–124.
- Kim, B.-J., Lee, Y.-M., Kim, E. H., Kang, S. K. & Choi, S.-N. (2002). Acta Cryst. C58, m361–m362.
- Kim, Y.-J., Kim, S.-O., Kim, Y.-I. & Choi, S.-N. (2001). Inorg. Chem. 40, 4481– 4484.
- Kretchmer, R. A. (1972). J. Org. Chem. 37, 2744-2747.
- Lee, Y.-M., Choi, S.-N., Suh, I.-H. & Bereman, R. D. (1998). Acta Cryst. C54, 1582–1584.
- Lee, Y.-M., Chung, G., Kwon, M.-A. & Choi, S.-N. (2000). Acta Cryst. C56, 67–68.
- Lopez, S., Muravyov, I., Pulley, S. R. & Keller, S. W. (1998). Acta Cryst. C54, 355–357.
- Mason, S. F. & Peacock, R. D. (1973). J. Chem. Soc. Dalton Trans. pp. 226-228.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Siemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wrobleski, J. T. & Long, G. J. (1977). Inorg. Chem. 16, 704-709.